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Abstract—The task of reidentifying groups of people under
different camera views is an important yet less-studied problem.
Group reidentification (Re-ID) is a very challenging task since
it is not only adversely affected by common issues in traditional
single-object Re-ID problems, such as viewpoint and human pose
variations, but also suffers from changes in group layout and
group membership. In this paper, we propose a novel concept
of group granularity by characterizing a group image by multi-
grained objects: individual people and subgroups of two and
three people within a group. To achieve robust group Re-ID,
we first introduce multigrained representations which can be
extracted via the development of two separate schemes, that is,
one with handcrafted descriptors and another with deep neu-
ral networks. The proposed representation seeks to characterize
both appearance and spatial relations of multigrained objects,
and is further equipped with importance weights which capture
variations in intragroup dynamics. Optimal group-wise matching
is facilitated by a multiorder matching process which, in turn,
dynamically updates the importance weights in iterative fash-
ion. We evaluated three multicamera group datasets containing
complex scenarios and large dynamics, with experimental results
demonstrating the effectiveness of our approach.

Index Terms—Group reidentification (Re-ID), group-wise
matching, multigrained representation, Re-ID.

I. INTRODUCTION

PERSON reidentification (Re-ID) aims at matching
and identifying pedestrians across nonoverlapping cam-

era views. This task is increasingly important in visual
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Fig. 1. (a) and (b) Left: Probe groups in camera A; right: correctly matched
groups (top) and incorrectly matched groups (bottom) in gallery camera B.
(c) Illustration of multigrained information for group Re-ID. The colored
lines and rectangles in (c) indicate the importance weights for individuals
and people subgroups. (Best viewed in color.)

surveillance and has attracted much attention in recent
research [1]–[3]. However, most research focused on individ-
ual person Re-ID, while the Re-ID of groups of people is
seldom studied. In practice, since most events (e.g., moving,
fighting, or violent actions) could be performed within distinct
groups instead of between individuals, it is essential to iden-
tify groups rather than single people when analyzing events
across cameras [4], [5]. Therefore, it is nontrivial to obtain
reliable group matching across different camera views.

In group Re-ID, there are two more basic challenges besides
viewpoint changes and human pose variations [3], [6], both
inherent issues for the individual person case. These challenges
are as follows.

1) Group Layout Change: The layout of people in a group
is largely unconstrained across different camera views.
Due to the dynamic movements of people, the relative
positions of people in a group may have large differences
in two camera views [see Fig. 1(a)].

2) Group Membership Change: People may often join or
leave a group [see Fig. 1(b)].

Most existing methods, for example, [4], [5], and [7],
view the input group image as an entire unit and extract
global/semiglobal features without explicitly performing indi-
vidual people matching and considering layout changes to
perform group-wise matching [4], [5]. A recent study [8]
attempts to use descriptors of local patches to partially handle
layout and membership changes.
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In this paper, we introduce the idea of group granular-
ity and characterize a group image by multigrained objects.
By defining crowds with a large membership overlap from
the same group, a group can be depicted with multigrained
objects: fine-grained objects are formed by a single person,
medium-grained objects are formed by a group of two people,
coarse-grained objects are formed by a group of three peo-
ple, and a global-grained object consists of all people in the
group. We argue that characterization of objects from multiple
granularities is helpful to enhance the invariance of descriptors
toward changes in group membership and layout.

We refer to the example in Fig. 1(a) for better clarity on the
need for group granularity. Due to the large layout variation
and camera viewpoint changes, the same group shows large
global appearance differences in two camera views. The Re-
ID performance is poor if global features are merely adopted
for the entire group for Re-ID [see the bottom-right image in
Fig. 1(a)]. This issue can be resolved if we include information
of finer group granularity (e.g., individual persons). On the
other hand, merely using the information on individual people
is also not always reliable. An example is shown in Fig. 1(b)
where two groups in camera B contain visually similar group
members to the probe group in camera A. In this case, the
information at medium-level granularity (e.g., subgroups of
two people) would be useful.

Our approach leverages on the representations of multiple
granularities, also called multigrained objects [see Fig. 1(c)],
for group Re-ID. In addition, motivated by the observa-
tions that groups in different cameras may be interfered by
group member variation, occlusion, and mismatching, and
that multigrained objects have different reliabilities on Re-ID
performances, we propose introducing the dynamic updated
importance weights to explicitly model the different charac-
terization power of each object in different granularities and
further improve group Re-ID performance.

Meanwhile, due to the strong ability of convolu-
tional neural networks to extract local invariant features,
some deep learning-based methods have achieved unprece-
dented performance in vision-recognition tasks in recent
years [9], [10]. Inspired by these works, many deep learn-
ing techniques have been applied to the person Re-ID
task [11], [12] and are demonstrated to outperform some
traditional pipelines, which are typically reliant on manually
designed feature representations and metric-learning algo-
rithms. Nevertheless, few works utilize deep learning methods
for group Re-ID. Considering the large variation in illumina-
tion, membership change in crowds, and pose transformation
in the group Re-ID dataset, there is sufficient motivation to
study the performance of deep CNNs on the group Re-ID task.

For comprehensiveness, we introduce two independent
pipelines for feature extraction. One is a combination of tra-
ditional hand-crafted algorithms while the other is based on a
multitask convolutional neural network. Both pipelines extract
their own set of appearance and spatial relation features of dif-
ferent granularities. Our experiments convincingly show that
our group Re-ID framework is able to achieve state-of-the-art
results on different datasets with either handcrafted features or
deep convolutional features.

In summary, our contributions are four-fold as follows.
1) We introduce multigrained representations for group

images to better handle changes in group layout and
membership, coupled with a dynamic weighting scheme
for better person matching.

2) We solve the group-wise matching problem by
using a multiorder matching algorithm that inte-
grates multigrained representations and combines the
information of both matched and unmatched objects to
achieve a more reliable matching result.

3) We propose two schemes to extract appearance and spa-
tial relation features for the multigrained representation:
one based on typical handcrafted features, and the other
based on deep CNN features. For the latter, a new
multitask integrated CNN is designed for this specific
purpose.

4) We create two challenging group Re-ID datasets with
large group membership and layout variations. The exist-
ing group Re-ID datasets consist of the relatively small
group sizes and group layout, which are less realistic in
real-world scenarios.

II. RELATED WORKS AND OVERVIEW

Person Re-ID has been studied for years. Most of them
focus on developing reliable features [13], [14]; deriving
accurate feature-wise distance metric [15], [16]; and handling
local spatial misalignment between people [3], [17]. Some
recent research works extend Re-ID algorithms to more object
types (e.g., cars [18]) or more complex scenarios (e.g., larger
camera numbers [19], long-term videos [20], and untrimmed
images [21], [22]).

During recent years, some deep learning-based methods
have emerged to solve the problem of single-person Re-ID.
These methods have a strong ability to extract rich invariant
features from images. A number of works [23], [24] exploit
CNNs for person Re-ID by exploiting pairwise labels from
positive and negative sample pairs in a variety of network
architectures. More recent works [11], [25], [26] are inclined
to equip CNNs with triplet loss [27], which has shown to per-
form exceedingly well [12], [28] by learning a representative
feature embedding space which facilitates a distance metric.

However, most existing works focus on the Re-ID of indi-
vidual person; as such, the group-level Re-ID problem is
seldom considered. Since group Re-ID contains significant
group layout changes and group membership variations, it
introduces new challenges and a proliferation of information
that requires encoding compared to scenarios addressed by
single-person Re-ID methods. Although some works [29], [30]
introduce people or group interaction into the Re-ID process,
they only target improving the Re-ID performance of a single
person. The characteristics of groups are still less considered
and not fully modeled.

Only a few works have been proposed to address group
Re-ID tasks [4], [5], [7], [8]. Most of them develop global
or semiglobal features to perform group-wise matching. For
example, Cai et al. [5] proposed a discriminative covari-
ance descriptor to capture the global appearance and statistic
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Fig. 2. Framework of the proposed group Re-ID approach, which consists of three sequential parts, that is, multigrained feature extraction, importance
evaluation, and multiple order matching. (Best viewed in color.)

properties of group images. Zheng et al. [4] segmented a
group image into multiple ring regions and derived semiglobal
descriptors for each region. Lisanti et al. [7] combined
sparsity-driven descriptions of all patches into a global group
representation. Since global or semiglobal features are unlikely
to capture information from local interaction in groups, they
may have limitations in handling complex scenarios with
significant group appearance variations caused by pose and
background interference.

Recently, Zhu et al. [8] developed a local-based method
which performs group Re-ID by selecting proper patch-pairs
and conducting patch matching between cross-view group
images. However, in order to reduce patch mismatches, this
method includes prior restrictions on vertical misalignments.
This limits their capability in handling significant group layout
changes or group member variations.

Our approach differs from the existing group Re-ID works
in two aspects.

1) The existing works perform Re-ID with information
derived from single granularity (i.e., either global or
patch-level information). Comparatively, our approach
leverages multigrained information to fully capture the
characteristics of a group.

2) Our approach does not include any prior restrictions on
spatial misalignments, which are able to handle arbitrary
group layout changes or group member variations.

Overview of Our Approach: Given the probe group image
captured from one camera, our goal is to find the matched
group images from a set of gallery group images captured
from another camera. We represent each group image by a set
of multigrained objects, and then proceed to extract features by
a combination of handcrafted descriptors, or by a forward pass
on a multitask CNN. With these features, the matching process
computes the static and dynamic importance weights of multi-
grained objects between the probe and gallery images. Then, a
multiorder matching algorithm computes intermediate match-
ing results, which are used to update the dynamic importance
weights. We perform these two stages in iterative fashion,
with final matching results obtained at convergence. The entire
framework is shown in Fig. 2.

III. MULTIGRAINED REPRESENTATION

A group image I contains a set of people: B =
{b1, b2, . . . , bN}, where N is the number of people and bi (or
simply denoted by i for presentation clarity) corresponds to
the person bounding box. The representation is computed by
building multigrained objects (people/subgroups): 1) fine gran-
ularity, including objects of an individual person, O1 = {i|i =
1, . . . ,N}; 2) medium granularity, including objects of two-
people subgroups, O2 = {(i1, i2)|i1, i2 = 1, . . . ,N, i1 �= i2};
3) coarse granularity, including objects of three-people sub-
groups, O3 = {(i1, i2, i3)|i1, i2, i3 = 1, . . . ,N, i1 �= i2 �= i3};
and 4) global granularity, referring to the entire group, Og =
{(1, 2, . . . ,N)}. In the cases where there are only two people
in the group image, we simply let O2 be the coarse granularity.

Choice of Granularities: We adopt four levels of granularity
because the combination of three distinct levels and a global
level is sufficient to characterize both the global appearance
and local layout of crowds, besides for tractability reasons. The
fine granularity helps to reduce the confusion in the global
appearance when encountering large layout or group mem-
ber changes, while the medium and coarse granularities can
help to resolve ambiguous individual person matches in the
fine granularity by incorporating local layout or co-occurrence
information in a group.

Feature Notations: The feature of an object o ∈ O1 in the
fine granularity, denoted by fo = fl

o, is about the local appear-
ance. The feature of an object o ∈ O2 ∪ O3 in the medium
and coarse granularity, denoted by fo = [fl

o, fs
o], consists of

two parts: 1) appearance, which is an aggregation of fea-
tures representing the local appearances of all people within
the subgroup and 2) spatial relation, a single or aggregation
of features fs

o that describes the spatial layout of each edge
linking two different individuals within this subgroup. Here,
aggregation indicates concatenating the feature of the same
granularity and semantics, followed by performing t-SNE [31]
for feature reduction. The notation [·, ·] denotes a vector con-
catenation operation, which also applies to the rest of this
paper. Meanwhile, the global feature of object o ∈ Og, denoted
by fo = fg

o, describes the appearance feature of the entire input
group image.
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Fig. 3. (a) Overview of our multitask CNN for feature extraction from input group images. (Best viewed in color.) The dotted rectangle denotes a triplet
of input images consisting of the anchor, positive, and negative samples. S4 and S5 denote the fourth and fifth stage of ResNet-34 CNN. (b) Examples from
datasets used in our experiments. The first row is from i-LID MCTS. The second and third rows are from our constructed DukeMTMC Group and Road Group
datasets, respectively.

As shown in Fig. 2, our framework is independent of the
choice of feature vectors used, which implies that we could
exploit some conventional algorithms to extract handcrafted
features. On the other hand, we also intend to exploit the
strong ability of deep CNNs in extracting more representative
and invariant features. Therefore, we introduce two different
pipelines to obtain these feature representations for usage in
our group Re-ID framework. The first extracts a combination
of manually designed descriptors to encode both object appear-
ances and layout relationship between objects while the second
is a new integrated deep learning-based method to extract
features in a single forward pass.

A. Handcrafted Feature Descriptors

In this section, we briefly describe the handcrafted fea-
tures utilized in this paper. Color and texture features [15]
are used as the appearance part of the object. To be specific,
for each single person input image (obtained from bounding
box bi and resized to unified resolution), we split it into 18
equal-sized patches along the vertical direction, and the RGB,
HSV, YCbCr, LAB, YIQ color features, and Gabor texture
features are extracted from each patch. The output-normalized
histograms of these features are concatenated to form a final
8024-D local appearance descriptor fl

o. Similarly, we also
extract global features fg

o in the same manner but with the
input image containing the entire group.

As for the spatial relation part, we use the relative dis-
tance and angle histograms among individuals in an object [32]
to describe each edge between two people (i, j). For two
bounding boxes bi and bj within a subgroup, we first denote
the relative position between their centers in polar coordinate
(ρij, θij), where ρij is the log-distance between the two cen-
ters and θij is the corresponding orientation angle. The 10-D
log-distance histogram Lij and 9-D angle histogram Pij are
constructed over uniform bins as follows:

Lij(k) = N (k − m; 0, σL) (1)

Pij(k) = N (k − mij; 0, σP
)+ N (k − mij;±9, σP

)
(2)

where N (x;μ, σ) is a discrete Gaussian window parameter-
ized by mean μ and variance σ , while mij is the index of the
bin containing ρij or θij. Finally, the two output histograms are
combined to form the descriptor that represents the bi–bj edge

fs
(i,j) = [Lij,Pij]. (3)

B. Integrated CNN for Feature Extraction

Inspired by modern CNN-based object detection frame-
works [33], which perform exceedingly well in both recog-
nition and localization tasks, we hypothesize that deep neural
networks can be tailored to handle both the appearance and
structural layout of objects in an integrated manner. As such,
we propose a new multitask network to jointly extract both
appearance and spatial relation features needed for our group
Re-ID framework.

The overview of the multiple-task CNN in this paper is
depicted in Fig. 3(a). For each input image, we use the ResNet-
34 [9] as the backbone structure for basic feature extraction.
Postprocessing includes two separate branches: 1) the global
branch, which is responsible for extracting features from the
entire group image and 2) a local branch, which is utilized to
handle individual objects and their relations to others. With
these branches processed in parallel, we could obtain the
multigrained features simultaneously.

1) Minibatch Organization: We borrow the idea of using
triplet loss for training [11], [12], [34] to learn representative
mapping of images to an abstract feature space. Therefore,
we organize the minibatch into triplets where each training
sample consists of three images: 1) an anchor image Ia from
probe images; 2) a positive image Ip from the gallery which
contains the same group as the anchor; and 3) a negative image
In which is randomly selected from the training set that has a
different group id from the anchor and positive images.

Throughout this section, we shall adopt the same subscripts
to denote anchor, positive, and negative images for features or
object sets. For example, fg

a denotes the global feature of the
anchor image and O1,a denotes the set of person objects in
the anchor image.
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2) Global Feature Extraction: The global branch receives
feature maps from the final convolution layer of the fifth stage
of ResNet-34, which is denoted as S5 in Fig. 3(a). We then
apply a simple global average pooling operation followed by
a fully connected layer as the global feature extraction module
to obtain the corresponding global features fg

m, m ∈ {a, p, n}.
3) Local Feature Extraction: The local branch receives fea-

ture maps from the final convolutional layer of the fourth stage
of ResNet-34 [denoted as S4 in Fig. 3(a)] and bounding box
sets Ba,Bp, and Bn, belonging to each image of the triplet.
The local feature extraction module applies ROI Pooling [33]
on each feature map according to its bounding box and sends
the output to a fully connected layer. Hence, we obtain the
intermediate local features f̂l

i,m for each ith individual person
in the image of set m ∈ {a, p, n}.

Next, these features are further utilized in two sub-branches.
First, a feature projection module takes the intermediate fea-
tures as input and yields local appearance features by a
nonlinear projection that constrains outputs to (−1, 1)

fl
i,m = tanh

(
Wl f̂l

i,m

)
(4)

where Wl is a learnable transformation matrix. Second, to
model the spatial relation between two objects, that is, an
edge linking two individuals (i, j), a feature fusion module
is applied to fuse intermediate features with another learnable
transformation matrix Ws as follows:

fs
(i,j),m = tanh

(
Ws

[
f̂l
i,m, f̂l

j,m

])
. (5)

4) Loss Function: To regularize the global and local out-
put features from different branches, we design three different
types of losses to train our multitask CNN. For the global
appearance features, we intend to learn an embedding space
where the anchor sample will be closer to the positive sample
than the negative sample. For this, we obtain a group-wise
training loss by utilizing the triplet loss

Lg =
[
d2

(
fg
a, fg

p

)
− d2

(
fg
a, fg

n

)+ λg

]

+ (6)

where [ · ]+ is the ReLU operator max(0, ·), d2(·, ·) denotes
the L2-norm distance between the two feature vectors, and λg

is a hyperparameter to control the margin size.
For the supervision of individual appearance features, we

could simply apply a triplet loss over the matched and
unmatched pairs, similar to that in (6). However, since the
number of matched individual pairs between anchor and posi-
tive images is much less than that of unmatched ones, the loss
might well be dominated by unmatched pairs. Inspired by the
Trihard loss [12], we impose the hard negative mining strategy
to the standard triplet loss, much akin to a k-nearest negative
neighbors manner

La = 1

|O1,a|
∑

i∈O1,a

[
d2

(
fl
i,a, fl

i′,p

)
− dneg(i)+ λl

]

+ (7)

where i′ ∈ O1,p is the individual person in the positive image
who matches exactly to the ith person in the anchor image.
Note that if person i in anchor does not match any individual
in the positive image, we set the d2(·, ·) term in (7) to be

zero. The hyperparameter λl controls the margin size of local
appearance features. The term dneg(i) is the average distance
between person i in the anchor image and people in set K =
Kp∪Kn, which carries the intuition of the k-nearest unmatched
individuals from other images in the feature space

dneg(i) = 1

|K|

⎛

⎝
∑

j∈Kp

d2

(
fl
i,a, fl

j,p

)
+
∑

j∈Kn

d2

(
fl
i,a, fl

j,p

)
⎞

⎠ (8)

where Kp and Kn denote the collection of k-nearest unmatched
individuals from the positive and negative images, respectively.

In the work of [33], deep neural networks can precisely
predict the relative offset between two bounding boxes. Based
on this observation, we design a regression loss to supervise
the learning of spatial relation features. Given the bounding
boxes, bi,m, bj,m ∈ Bm (with m ∈ {a, p, n} as mentioned
before) of two individuals (i, j) in an image and the fea-
ture fs

(i,j),m representing the edge between them, we apply
linear regression with learnable parameter Wr to predict the
normalized spatial transition

[
δ̂x
(i,j),m, δ̂

y
(i,j),m

]T = Wrfs
(i,j),m. (9)

Suppose the bounding box is in the form of bm,i =
(xi,m, yi,m,wi,m, hi,m) as defined in [33], then we denote the
ground-truth transition as

δx
(i,j),m = xj,m − xi,m

wi,m
(10)

δ
y
(i,j),m = yj,m − yi,m

hi,m
. (11)

Hence, the localization loss over the spatial relation features is

Ls = 1

P

∑

m∈{a,p,n}

∑

(i,j)∈O2,m

∑

t∈{x,y}
S
(
δ̂t
(i,j),m, δ

t
(i,j),m

)
(12)

where P = ∑
m∈{a,p,n} |O2,m| is the sum of the total number

of bounding box pairs within each image of the triplet. S(·, ·)
denotes the smooth L1 loss used also in [33]. Finally, we
combined the losses in (6), (7), and (12) to obtain the final
objective function for our multitask CNN framework

L = Lg + λ1La + λ2Ls (13)

where λ1 and λ2 are balancing factors. After the training phase,
this multitask network is used to extract deep multigrained
features in a single forward pass. Aggregation of these local
features is performed to attain features of coarse and medium
granularities for the subsequent matching step. In our experi-
ments, we set λg and λl as 2.0, and the balancing factors λ1
and λ2 as 1.0 during training.

IV. IMPORTANCE WEIGHTING

We introduce an importance weight αo for each object o
(except the global-grained object) to indicate the object’s dis-
criminativity and reliability inside the group image for group
person matching. The importance weighting scheme is par-
tially inspired by but different from the saliency-learning
methods [6], [8] for differentiating patch reliabilities in person
Re-ID: 1) our scheme aims to weigh each granularity object



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON CYBERNETICS

rather than patches and 2) our scheme dynamically adjusts
the importance weights in an iterative manner, by using the
intermediate matching results at each iteration (see Fig. 2).

A. Fine-Grained Object

The importance weight (αi) for each individual person i
in the probe image I consists of two components: 1) static
weight, which is only dependent on the group image and
2) dynamic weight, which is dynamically updated according
to the intermediate matching results with the gallery group
images, from another camera in our approach. The formulation
of this weight is given as follows:

αi = t1
(
i,G\i

)+ s(i,Mi)+ p
(
Mi,MG\i

)
(14)

where the first term is the static weight, and the second and
third terms form the dynamic weight.

Static Weight: The static weight t1(i,G\i), where G\i = G−
{i} denotes the set of other individual people in G, is used to
describe the stability. It is computed as follows:

t1
(
i,G\i

) =
∑

i′∈G\i

ρi

ρi′
(15)

where ρi is the local density around person i in group G.
It reflects the density of people in a neighborhood around i,
which is computed by following [35].

By (15), the static weight t1 is mainly obtained by eval-
uating the relative local density ratios between person i and
his/her peer group members i′ in G. If the local density around
i is larger than the density around his/her peer group members
i′, the stability of i is increased, indicating that i is located in
the center region of group G and should be a more reliable
member in group Re-ID [see person 1 in Fig. 4(a)]. On the
contrary, when i’s local density is smaller than his/her peer
group members, a small stability value will be assigned, indi-
cating that i is located in the outlier region of the group and
is less reliable [see person 2 in Fig. 4(a)].

Dynamic Weight: The dynamic weight s(i,Mi) +
p(Mi,MG\i) consists of two parts: 1) the saliency term
s(i,Mi) and 2) the purity term p(Mi,MG\i), where Mi is
the set of matches from the gallery group images, and MG\i is
the set of matches for all people except i in the probe image,
MG\i = {Mi′ |i′ /∈ G}. The sets of matches are illustrated in
Fig. 4(a).

The saliency term is computed as

s(i,Mi) = λs
df
(
fi, fMi

)

|Mi| . (16)

Here, df (·) is the Euclidean distance between features. |Mi|
is the cardinality of Mi. fMi is the feature describing the set
of matches Mi, and we use the feature of the (1/2)|Mi|th
nearest neighbor of i in Mi as done in [6] and [36]. λs is an
adaptive normalization factor to normalize the range of s to
be within 0 to 1, which is computed as follows:

λs = 1
∑

i df
(
fi, fMi

)
/|Mi| . (17)

For simplicity, the other normalization factors in the rest of
this paper are calculated in the similar way as λs.

Fig. 4. (a) Illustration of matched-people sets and their distributions in the
feature space. (The color solid arrows indicate the one-to-one mapping results
between individuals. People circled by the same color rectangles in camera B
are matched to the same person in A, and belong to the same matched-people
set.) (b) Derived importance weights for multigrained objects (individuals,
2-people subgroups, and 3-people subgroups) in two example group images.
Note: the importance weights for some 2-people/3-people subgroups are not
displayed in order for a clear illustration. (Best viewed in color.)

According to (16), if the appearance of an individual person
i is discriminative, a large portion of individuals in i’s matched
set Mi are visually dissimilar to i. This leads to a large
df (fi, fMi) and a large saliency value [6], [36] [see person 1
in Fig. 4(a)]. Moreover, due to the variation of group members
in group Re-ID, each individual person may have a different
number of matched people in his/her Mi. Therefore, we fur-
ther introduce |Mi| in (16) such that the person with fewer
matched people can indicate a more discriminative appearance.

The purity term is computed as

p
(
Mi,MG\i

)
=
∑

i′∈G\i

λpdm(Mi,Mi′) (18)

where dm(·) is the Wasserstein-1 distance [37], a measure
to evaluate the dissimilarity between two feature sets. λp is
calculated in the same way as λs in (16).

According to (18) and Fig. 4(a), the purity measurement
reflects the relative appearance uniqueness of person i inside
group G. If i has similar appearance features as other group
members in G, their matched people in camera B should also
be visually similar and located close to each other in the fea-
ture space [see M3 and M4 in Fig. 4(a)], resulting in a small
purity value. On the other hand, if a person includes unique
appearance features in G, his/her matched people in camera
B should have larger feature distances than those of the other
members in G, and lead to a large purity value [see M1 in
Fig. 4(a)].
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B. Medium and Coarse-Grained Objects

The importance weight αi1i2 of a medium-grained object
(i1, i2) is computed as

αi1i2 = αi1 + αi2 + t2(i1, i2). (19)

Here, t2(i1, i2) is the stability measure of the subgroup (i1, i2).
A two-person subgroup is thought to be more stable if its
members are spatially closer to each other. Thus, we simply
compute t2 by the inverse of spatial distance between i1 and i2.

The importance weight αi1i2i3 of a coarse-grained object
(i1, i2, i3) is computed as

αi1i2i3 = αi1i2 + αi2i3 + αi1i3 + t3(i1, i2, i3). (20)

Here, αi1i2 is the importance of a two-people pair in (i1, i2, i3)
[see (19)]. t3 is the stability of a three-person subgroup. We
assume the equilateral triangle as the most stable structure
for three-people subgroups and model t3 by evaluating its
similarity to an equilateral triangle according to (21), where
θk, k ∈ {1, 2, 3} denote the angles of the triangle constructed
by coarse subgroup (i1, i2, i3)

t3(i1, i2, i3) = exp

(

−2 ∗
3∑

k=1

| sin θk − sin
π

3
|
)

. (21)

Fig. 4(b) shows the importance weights of some groups.
From Fig. 4(b), we can see that our process can effectively
set larger weights on objects with stronger characterization
ability to represent the entire group.

C. Iterative Update

We utilize an iterative process which updates the impor-
tance weights and group-wise matching results iteratively.
We initialize the dynamic weights for all objects by 1 and
compute the optimal matching through multiorder match-
ing (see Section V) to obtain an initial matching result:
M1,M2, . . . ,MN . This matching result is used to update
the dynamic importance weights. This procedure is repeated
until the importance weights become converged or the maxi-
mum iteration is reached. Although the exact convergence of
our iterative process is difficult to analyze due to the inclusion
of multiorder matching, in our experiments, we confirm that
most important weights become stable within five iterations,
which implies the reliability of our approach.

V. MULTIORDER MATCHING

Given a probe image Ip and a gallery image Ig, our goal
is to compute the matching score between the two groups of
people. Suppose that there are Np people in the probe image,
and Ip and Ng people in the gallery image Ig. The goal of the
multiorder matching process aims to find: 1) an optimal one-
to-one mapping, C = {(i, j)| ∀(i, j), (i′, j′), i �= i′, j �= j′}, where
(i, j) (= cij) denotes a match between the ith person from the
probe image and the jth person from the gallery image and
2) the maximum matching score.

Since a group is characterized by multiple granularities, it
is natural to measure the similarity across different granular-
ities to find the optimal match. With this consideration, the

objective function of our matching process is formulated with
multiorder potentials

Q(C) = P1(C)+ P2(C)+ P3(C)+ Pg(C)
+

∑

r �=l,r,l∈{1,2,3,g}
Prl(C) (22)

where P1(C), P2(C), P3(C), and Pg(C) are the first-order,
second-order, third-order, and global potentials, evaluating the
matching quality over each subgroup of people, and Prl(C) is
the interorder potential.

A. Multiorder Potentials

First-Order Potential: P1(C) is used to model the matching
scores over individual people. It is calculated by the sum of
the matching scores of all the individual matches in C

P1(C) =
∑

cij∈C
m1
(
cij
) =

∑

cij∈C
w1
(
fi, αi, fj, αj

)
(23)

where fi, αi and fj, αj are the feature vector and importance
weight for the probe-image person i and gallery-image per-
son j, respectively [see (14)]. m1(cij) = w1(fi, αi, fj, αj) is the
matching score for match cij = (i, j), calculated by

m1
(
cij
) = w1

(
fi, αi, fj, αj

) = λw1

ψ
(
αi, αj

)

df
(
fi, fj

) (24)

where ψ(αi, αj) = [(αi+αj)/(1+|αi−αj|)] is the fused impor-
tance weight, which will have a large value if the importance
weights of αi and αj are both large and close to each other.
df(·) is the Euclidean distance and λw1 is the normalization
constant for the first-order potential.

By (24), the matching score m1(cij) is computed by
the importance-weighted feature similarity w1(fi, αi, fj, αj)

between the matched individuals i and j.
Second-Order Potential: P2(C) is used to model the match-

ing scores over two-people subgroups

P2(C) =
∑

ci1j1 ,ci2j2∈C
m2
(
ci1j1, ci2j2

)

=
∑

ci1j1 ,ci2j2∈C
w2
(
fi1i2, αi1i2, fj1j2 , αj1j2

)
(25)

where fi1i2 , αi1i2 and fj1j2 , αj1j2 are the feature vector and
importance weight for the probe-image subgroup (i1, i2)
and gallery-image subgroup (j1, j2), respectively [see (19)].
m2(ci1j1, ci2j2) = w2(fi1i2 , αi1i2 , fj1j2, αj1j2) is the second-order
match score between two-people subgroups (i1, i2) and (j1, j2),
which is calculated in a similar way as (24)

w2
(
fi1i2 , αi1i2 , fj1j2, αj1j2

) = λw2

ψ
(
αi1i2, αj1j2

)

df
(
fi1i2, fj1j2

) . (26)

Third-Order Potential: P3(C) is used to model the matching
scores over three-people subgroups

P3(C) =
∑

ci1j1 ,ci2j2 ,ci3j3∈C
m3
(
ci1j1 , ci2j2, ci3j3

)

=
∑

ci1j1 ,ci2j2 ,ci3j3∈C
w3
(
fi1i2i3 , αi1i2i3 , fj1j2j3 , αj1j2j3

)
(27)
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where the term w3(fi1i2i3, αi1i2i3, fj1j2j3, αj1j2j3) = m3(ci1j1 , ci2j2 ,

ci3j3) is the third-order match score between three-people sub-
groups (i1, i2, i3) and (j1, j2, j3). It is calculated in the same
way as (26).

Global Potential: The global potential is calculated by the
global matching score between probe and gallery images Ip

and Ig

Pg(C) =
∑

C
mg

(
ci1j1, ci2j2 , . . . , ciNp jNq

)

= wg
(
fp, αp, fg, αg

)
(28)

where fp and fg are the global feature vectors for the entire
group images Ip and Ig. αp = αg = 1 are the importance
weights for global objects. In this paper, we simply use the
global feature similarity as the global matching score, as
wg(fp, αp, fg, αg) = [1/(df(fp, fg))].

Interorder Potential: Since each match cij is described by
potentials in multiple orders [see (23)–(28)], we also intro-
duce interorder potentials to properly combine this multiorder
potential information. Specifically, the interorder potential
between orders r, l ∈ {1, 2, 3, g} is calculated by

Prl(C) =
∑

cij∈C
mrl
(
cij, r, l

)
(29)

where mrl(cij, r, l) is the interorder correlation for match cij.
It is calculated by

mrl
(
cij, r, l

) = mr
(
cij, r

)+ ml
(
cij, l

)

1 + |mr
(
cij, r

)− ml
(
cij, l

)|
for mk

(
cij, k

) = λk

∑

ci′1j′1
=cij

mk

(
ci′1j′1 . . . ci′kj′k

)
(30)

where λk is the normalization constant for order k, and
mk(ci′1j′1 . . . ci′kj′k) is the intraorder match score in order k [as
in (24) and (26)]. From (30), if a match cij creates large and
similar intraorder match scores in both the rth and lth order,
it will be considered as being more valuable and reliable and,
thus, will have larger interlevel potentials.

B. Optimization

The objective function in (22) properly integrates the
information of multigrained objects. Thus, by maximizing
(22), we are able to obtain the optimal one-to-one mapping
result among individuals in probe and gallery groups.

To solve the multiorder matching problem in (22), we
construct a multiorder association graph to incorporate all
candidate matches and multiorder potentials in the objective
function, as in Fig. 5. In Fig. 5, each layer includes all candi-
date matches cij (the circular nodes) and their corresponding
intraorder matching scores mk (the rectangular nodes in green,
orange, or pink), which models the intraorder potentials in
a specific order. Besides, the blue rectangular nodes link-
ing circular nodes in different layers represent the interorder
correlations mrl(cij, r, l). They model the interorder potentials
between different orders.

With this association graph, we are able to solve
(22) by adopting general-purpose hypergraph-matching

Fig. 5. Illustration of the multiorder association graph. Left: Cross-view
group pair being matched. Right: Multiorder association graph constructed
for the group pair. (Best viewed in color.)

Fig. 6. Illustration of the unmatched term in (31). (a) True match pair.
(b) False match pair. Green and black rectangles show matched and unmatched
individuals, respectively. Since the right group in (b) includes more individu-
als, we can find more matched pairs. This may misleadingly result in a high
similarity score. However, when considering the large number of unmatched
people in (b), the matching score of (b) ought to be properly reduced.

solvers [38], [39]. Specifically, we first initialize a mapping
probability for each candidate match in the association graph,
and then apply a reweighted random walk [39] to update these
mapping probabilities via the interorder/intraorder links and
potential weights in the association graph. Finally, the mapping
probabilities in all layers in the association graph are com-
bined to obtain the optimal one-to-one mapping result from
the candidate matches [38].

C. Fused Matching Score

After obtaining one-to-one mapping between individual
people in two groups, we are able to calculate matching scores
accordingly. In order to obtain a more reliable matching score,
we introduce a fused scheme by integrating the information
of both matched and unmatched objects

S
(
Ip, Ig

) =
∑

k

∑

(i1...ik)∈Rp

wk
(
fi1...ik , αi1...ik , fM(i1...ik), αM(i1...ik)

)

|Rp|

− λr ·
∑

k

⎛

⎜
⎝
∑

(i1...ik)∈Rp

ai1...ik

|Rp|
+

∑

(j1...jk)∈Rg

aj1...jk

|Rg|

⎞

⎟
⎠

(31)

where (i1, . . . , ik) is a person/subgroup in a probe group image
Ip, and M(i1 . . . ik) is its one-to-one matched person/subgroup
in gallery image Ig. wk(·) is the similarity matching score
between (i1, . . . , ik) and M(i1 . . . ik), as in (24) and (26). α
is the importance weight. λr = 0.5 is a balancing factor. Rp

and Rg are the sets of reliably matched objects in groups
Ip and Ig, and Rp and Rg are the unmatched object sets. The
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TABLE I
STATISTICAL ANALYSIS OF DATASETS

matched object pairs that maximize the objective function (22)
are taken as the reliably matched objects, and put into Rp and
Rg. The remaining unmatched or fewer similar objects are put
into Rp and Rg.

From (31), our fused scheme integrates four granularities
(i.e., k = 1, 2, 3, g) to compute the group-wise matching
score. Inside each granularity, the matched pairs that maximize
(22) are used to compute the similarity [the first term in
(31)] in order to reduce the interference of confusing or mis-
matched people/people subgroups. Meanwhile, we introduce
an unmatched term evaluating the importance of unmatched
objects [the second term in (31)]. As such, we can properly
avoid misleadingly high matching scores in false group pairs
(as in Fig. 6) and obtain a more reliable result.

VI. EXPERIMENTAL RESULTS

We perform experiments on three datasets: 1) the publicly
available i-LID MCTS dataset [4] which contains 274 group
images for 64 groups; 2) our newly constructed DukeMTMC
Group dataset which includes 177 group image pairs extracted
from the 8-camera-view DukeMTMC dataset [40]; and 3) our
newly collected Road Group dataset which consists of 162
group pairs taken from a 2-camera crowded road scene.1

To construct the Road Group dataset, we use [41] to auto-
matically identify groups from key frames that were extracted
at equi-intervals of 50 frames. Then, the group image pairs are
randomly selected from sets according to different group sizes
and occlusion variations. We define two cross-view images
from different cameras as belonging to the same group when
they have more than 60% of members in common.

Some example of groups from the three datasets are shown
in Fig. 3(b), showing diverse challenging conditions across
cameras. We also provide a statistical analysis of the three
datasets in Table I. “Average Person” denotes the average num-
ber of individuals per group image, while “Member Change”
denotes the average difference in group size for each pair of
group images. “Dispersity” is measured by averaging the nor-
malized distance between each individual member to its group
centroid. This measure computes the sparsity (or compact-
ness) of the group, which indirectly indicates the proneness
to layout change. “Occlusion Pairs” denotes the average num-
ber of individual pairs that occlude each other within an image.
Note that despite the i-LID MCTS dataset having smaller
and more compact groups, it suffers from low-image quality
and large illumination changes. Meanwhile, the new datasets
DukeMTMC Group and Road Group are both plagued with

1Dataset and source code will be available at
http://min.sjtu.edu.cn/lwydemo/GroupReID.html.

Fig. 7. Matching results by: (a) using only information of individuals;
(b) using multigrained information; (c) setting equal importance weights for
all individuals/subgroups; and (d) using our importance evaluation process
to obtain importance weights. The red and blue links indicate correct and
wrong matches, respectively. (Note: For a clear illustration, we only display
the matching results between individuals.)

severe object occlusions, and large layout and group member
variations due to larger group sizes.

A. Experimental Setup

To provide a fair comparison with other methods, we fol-
low the evaluation protocol in [8] and [42] by partitioning the
datasets by half into the training set and validation set. The
final results are obtained by averaging the performances on
the validation set over five random splits. We report our results
using the cumulated matching characteristic (CMC) [3], which
is able to measure rank-k correct match rates.

We use a ResNet-34 model as our model feature extractor.
We initialize the learning rate at 10−4 and divide it by a factor
of 10 every 15 epochs, stopping at the maximum epoch of 40.
Our network is trained with an SGD solver (weight decay of
10−4) on an NVIDIA GeForce GTX 1080 GPU. Contrary to
the work of [33], we employ a nonconventional bin distribution
of size 6×3 for ROI Pooling since bounding boxes for people
are typically tall and narrow.

B. Ablation Studies

We present our results alongside a number of ablation
studies to provide a wide perspective of the performance of
our proposed approach together with the impact of various
components in the framework.

1) Results With Features of Different Granularities: In
order to evaluate the effectiveness of our multigrained group
Re-ID framework, we compare eight methods of different
granularities including some variations: 1) only using global
features [15] of the entire group (Global); 2) only using
features of individual people (Fine); 3) using features of indi-
vidual people and two-people subgroup (Fine+Medium); 4)
using features of individual, two-people, and three-people sub-
groups (Fine+Medium+Coarse); 5) using our multigrained
framework, but assigning equal importance weights for all
people/people subgroups, that is, set all to 1 (Proposed-equal
weights); 6) using our multigrained framework, but omitting



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON CYBERNETICS

TABLE II
ABLATION STUDY RESULTS OF REPRESENTATIONS OF VARIOUS

GRANULARITIES ON THE ROAD GROUP DATASET

the spatial relation features in the multigrained represen-
tation (see Section III, Proposed-no spatial); 7) using our
multigrained framework, but using the ground-truth pedestrian
detection results (Proposed-GT); and 8) using our multigrained
framework with an automatic pedestrian detection method
of [43] to identify individual people in groups (Proposed-
auto).

Table II shows the CMC results of group Re-ID on the
Road Group dataset, measuring the correct match rates for
different Re-ID ranks. The upper part lists the results based
on handcrafted features (see Section III-A) while the lower
part lists the results based on deep convolutional features (see
Section III-B).

Fig. 7 shows some group-wise matching results under
different methods. We make the following observations.

1) The Global method achieves poor results. This implies
that simply using the entire group image cannot effec-
tively handle the intricate variations that are present
in group Re-ID. Comparatively, the Fine method has
obviously better performance by extracting and match-
ing individual people to handle the challenges of
group dynamics. However, its performance is still hin-
dered by the interference of pedestrian misdetections
or mismatches [see Fig. 7(a)]. These problems are
reduced more effectively in the Fine+Medium and
Fine+Medium+Coarse methods, both of which con-
tain subgroup-level information that captures underlying
group dynamics. Our proposed framework (Proposed-
GT and Proposed-auto), which includes all levels of
granularity, can achieve the best performance.

2) The Proposed-equal weights method has obviously
poorer results than its counterpart with importance
weights (Proposed-GT and Proposed-auto). This clearly
indicates that: a) assigning importance weights to differ-
ent individuals/people subgroups is significant in guar-
anteeing group Re-ID performances and b) our proposed
importance evaluation scheme is effective in finding
proper importance weights for all levels of granularity,
such that reliable and discriminative individuals/people

subgroups are highlighted, resulting in better match-
ing results. For instance, in Fig. 7(c) and (d), due to
large layout change between groups, the Proposed-equal
weights scheme is unable to assign a high score on the
pairs, while the Proposed-auto scheme allows salient
objects to be given greater importance, hence resulting
in a higher matching score.

3) The Proposed-no spatial method achieves relatively sat-
isfactory results. This indicates that even when spatial
relation features are not encoded, our approach can gen-
erally still obtain reliable performances, propelled by
multigrained information and importance weights. In the
case of deep convolution features, we observe a rela-
tively larger performance drop when spatial features are
not used (about 10% for rank-1), which indicates that
the choice of spatial features extracted from our CNN
is crucial and can boost the group Re-ID accuracy to a
large extent.

4) The Proposed-auto method has almost similar results
as the Proposed-GT method, only marginally lower
in most cases. The close performances of these two
methods indicate that our multigrained group Re-ID
framework has the ability to handle matching errors
caused by pedestrian misdetections. For example, in
Fig. 7(a), the left group in camera A is incorrectly
matched with the blue rectangle in camera B which
detected a parked motorcycle. However, by integrating
multigrained information, we can successfully avoid this
mismatch by considering subgroup correlation at higher-
level granularities [see Fig. 7(b)]. Note that the iterative
procedure refines the importance weights even at fine
granularity, subsequently resulting in a correct individual
match.

5) By comparing the results as a whole, we find a similar
trend with respect to the combination of granulari-
ties, which affirms the good scalability and extensibility
of our group Re-ID framework to accommodate dif-
ferent types of features. Further, we find that when
deep convolutional features are used, the performance
of our framework is usually better than the handcrafted
counterpart on identical granularity settings.

2) Results With Different Detection Recalls: In
Section VI-B1, we demonstrate that the matching accu-
racy is competitive when a high-quality pedestrian detector is
used. Following this observation, we further investigate the
effect of detection recalls on our final matching accuracy.
We conduct this experiment by altering the output confidence
threshold of our detector [43] to obtain detection results at
different recall rates. We then perform group Re-ID based on
the detected objects and their respective bounding boxes. In
Fig. 8, we compare the Rank-1 CMC scores for handcrafted
and deep convolutional features against detection recall rates.

From Fig. 8, we find the final matching results are rela-
tively robust against the quality of detectors that we adopt.
This is evident as the drop in Rank-1 CMC score is less than
3% for every corresponding 5% decrease (approximately) in
the recall rate. This observation further demonstrates that our
multigrained matching framework is robust to the detection
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Fig. 8. Rank-1 CMC scores via different detection recall rates using hand-
crafted features (orange) and convolution features (blue). (Best viewed in
color.)

quality and could still be helpful for the group Re-ID problem
even when prior knowledge of individuals is incomplete.

3) Results With Different Matching Constraints: In this
paper, we further evaluate the effectiveness of our multiorder
matching process when matching constraints are varied. Five
methods are compared: 1) only single-level matching, that
is, the first-order potential in (23) (Single); 2) discard the
interorder potential term, that is, setting all Prl(C) terms in
(22) to 0 (No inter); 3) discard the unmatched term [i.e.,
the second term in (31)] when calculating matching scores
(No dis); 4) use hyperedge matching [39], which integrates
multigrained information by constructing a multiorder similar-
ity function (Hyp-E); and 5) our proposed matching process
(Proposed-auto).

Table III shows the CMC matching scores for the group
Re-ID task using multiorder matching with different match-
ing constraints and criterion. We report results for both
handcrafted features and convolutional features on the Road
Group dataset. From Table III, we can draw the following
conclusions.

1) In comparison with the Single method, the higher-order
potentials of the Proposed-auto method clearly play an
important role in improving the group Re-ID score by a
great measure. These potentials are essential to handle
matching of multiple-person subgroups to complement
the use of multigrained object representation.

2) The Proposed-auto method obtained better results than
the No inter method. This comparison indicates that the
interorder potential term is useful to properly capture
correlations between different levels of granularity.

3) The Proposed-auto method performed significantly bet-
ter than the No dis method. This demonstrates the
importance of including the information of unmatched
objects [see (31)] in the matching process. Results on
both features show that this information has far more of
an impact than that of the interorder potential term [see
method (2)].

4) The Proposed-auto method also has better matching
accuracy than the Hyp-E method. This demonstrates that
our multiorder matching process can make better use of
the multigrained information in groups during matching.

4) Results With Different Feature Combinations: We also
investigate the effectiveness of using convolutional features

TABLE III
ABLATION STUDY RESULTS OF VARIOUS MATCHING ORDER AND

CRITERION ON THE ROAD GROUP DATASET

from our multitask CNN for different parts of the extracted
features [see Fig. 3(a)]. We evaluate the CMC score for all
three datasets on the following combinations of features.

1) Use handcrafted features to describe both appear-
ance and spatial relation for objects of all granularity
(Hand-crafted).

2) Use convolutional features only to represent the
global image and keep other features as handcrafted
(Global-conv).

3) Represent appearance of global and local objects with
convolutional features and keep spatial relation features
handcrafted (Appearance-conv).

4) Convolutional features for all parts including the spatial
relation features (Full-conv).

We report the matching accuracy with respect to different
ranks in Table IV. From these results, we can observe the
following:

1) Benefits are limited when only the global handcrafted
feature is replaced with one that is deep convolutional.
This shows that convolutional features are not suffi-
ciently discriminative when applied to the entire group
image.

2) There is a leap in improvement from the Appearance-
conv to Full-conv method, which indicates that using
deep representations to encode spatial relations between
individuals is more impactful than opting for handcrafted
representations.

3) Overall, the improvement brought on by the Full-
conv method over the Hand-crafted method is more
prominent on the DukeMTMC Group and Road Group
datasets than on i-LIDS MCTS. This is indicative of the
robustness of our proposed deep convolutional features
in more crowded scenarios. However, the handcrafted
feature is still valuable since it can be applied to any sce-
nario without an additional training process, especially
when the data are limited and/or there are insufficient
means to train a CNN feature extractor.

C. Results on Single-Person Re-ID

Although our approach is designed for the group Re-ID
task, the intermediate result of fine-grained mapping C could
be seen as a side product of our matching process. To fur-
ther investigate how multiorder constraints and priors of group
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TABLE IV
CMC RESULTS FOR GROUP RE-ID ON DIFFERENT DATASETS BASED ON VARIOUS FEATURE COMBINATIONS

TABLE V
RANK-1 RESULTS (R1) OF DIFFERENT MATCHING SCHEMES FOR

SINGLE-PERSON RE-ID ON THE ROAD GROUP DATASET

pairs affect the accuracy of individual matching, we conduct
an extra experiment on single-person Re-ID.

We compare two state-of-the-art single Re-ID methods, that
is, TriNet [12] and AlignReID [26], against four variants of
our matching scheme on the Road Group dataset.

1) Given a person from a probe image, we find the near-
est person from among all individuals in the gallery
groups based on the Euclidean distance in feature space
(Single-match).

2) Given a probe image, we first find its matched group
in the gallery, and for each individual in the probe
group image, we find the nearest person from among
the individuals in the matched gallery group based on
the Euclidean distance in feature space (Intragroup).

3) We first obtain the matched pairs C between groups by
solving the group-wise multiorder matching problem,
if the matched group is exactly the ground truth, we
take C as matching results for individual objects in the
probe image; otherwise, we regard all people in probe
groups as unmatched (Proposed-auto). We conduct these
experiments on both handcrafted and deep convolutional
features.

We report the Rank-1 CMC score for single-person Re-ID
on the Road Group dataset in Table V and further visualize
some sample results of different schemes in Figs. 9 and 10.
Table V is split into two parts. The upper part lists results from
methods without prior for groups, while the lower part lists
results with group constraint. From these results, we observe
the following:

1) From Table V, we observe that a simple person-wise
matching strategy without prior groups performs rather
poorly compared with other approaches. This indicates
person Re-ID using only person-wise descriptors may
be ill-suited for such group scenarios since the search
space is likely too large with limited samples per
person. Without group priors, it is common to yield
matched individuals from other groups who are sim-
ilar in appearance [illustrated by the blue arrows in
Fig. 9(a) and (b)].

Fig. 9. Examples of incorrect individual matching (blue arrows) under single-
match scheme and corresponding results under proposed scheme (red arrows).
(Best viewed in color.)

Fig. 10. Examples of individual matching results. (a) and (b) Matching
results under the intragroup scheme. (c) and (d) Corresponding results under
the proposed scheme. The blue arrow indicates incorrect matches while red
arrows denote the correct ones. (Best viewed in color.)

2) Although the Intragroup method performs better than
person-wise matching, it is still worse than the proposed-
auto scheme. Even by limiting the search space of
the matched group, there still exists interference that
results in incorrect individual matching For example, in
Fig. 10, the matched results in Fig. 10(a) show confu-
sion with an individual with highly similar clothes; in
Fig. 10(b), there exists an occlusion in an overcrowded
area. Both of these factors result in failures in the intra-
group method, while the proposed-auto scheme could
handle these issues better since the constraint of the mul-
tiorder potential requires the system to consider optimal
matching not only between individuals but also between
subgroups of multiple people.

D. Comparison With State-of-the-Art Methods

Table VI summarizes the group Re-ID performances on
various datasets, comparing our proposed approach against
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TABLE VI
CMC RESULTS FOR GROUP RE-ID ON THE THREE DATASETS

state-of-the-art group Re-ID methods: CRRRO-BRO [4],
Covariance [5], PREF [7], and BSC+CM [8]. For clarity, we
denote the features used in our method using the suffix hand
for handcrafted features and conv for the convolutional features
derived from our multitask deep CNN.

For further benchmarking, we also include the results of
the state-of-the-art methods designed for single-person Re-
ID. Among them are methods that utilize patch saliency
(Saliency [6]) or a KMFA(Rχ2 ) distance metric to calculate
image-wise similarity (Mirror+KMFA [15]). We also compare
with two deep metric learning-based methods: 1) TriNet [12],
a combination of CNN and triplet loss and 2) AlignReID [26],
a CNN-based method which simultaneously learns global and
local distances between sample images. Since these two meth-
ods are originally designed for person Re-ID, we design two
variants to extend them for the group Re-ID scenario. One
variant extracts features of individuals, under their respec-
tive deep frameworks [12], [26], and proceeds to apply the
Kuhn–Munkres algorithm for bipartite matching between indi-
viduals in two groups. Finally, the similarity between two
groups is computed as the inverse of the summation of fea-
ture distances between matched pairs. We denote this variant
with a suffix local, named after the nature of this method.
The other variant directly takes the group image as the input
of the algorithm in [12] and [26] and calculates the group
similarity according to the Euclidean distance between output
features. We denote this variant with a suffix global, since it
considers the entire image. From Table VI, we can observe
the following:

1) Our approach (handcrafted or deep convolutional fea-
tures) has better results than the other competing meth-
ods, on all three evaluated datasets. This demonstrates
the resounding consistency and effectiveness of our
approach in addressing the group Re-ID problem.

2) Group Re-ID methods that used global features
(CRRRO-BRO [4], Covariance[5], and PREF [7])
achieve less satisfactory results. This indicates that uti-
lizing only global features is clearly inadequate at
handling the diverse range of challenges in group Re-ID.

3) Although the BSC+CM method obtained better results
than that of global feature-based methods by introduc-
ing fine-grained objects (i.e., patches) to handle group
dynamics, its performance is still evidently lower than

TABLE VII
RUNNING TIME ON THE THREE DATASETS

our approaches. This implies the usefulness of including
information from multiple granularities.

4) Our approach is also obviously superior to the con-
ventional methods for single-person Re-ID (Saliency,
Mirror+KMFA). This indicates that the task of
re-identifying each individual in a group-wise setting is a
rather limited solution that is likely to fail in challenging
group Re-ID scenarios.

5) Deep metric-learning methods perform poorer than our
approach since they only resort to fine-grained rep-
resentation (between person objects) while ignoring
more complex patterns that occur at the medium and
coarse subgroup levels. Interestingly, this comparison
also shows that these single Re-ID methods perform
relatively better on groups with more individuals (e.g.,
Road Group).

6) The improvement of our approach is more obvious on
datasets with larger group layouts and group member
changes (DukeMTMC Group and Road Group). This
demonstrates that our approach is capable of handling
the dynamic changes that naturally occur in the group
membership. On the other hand, the improvement on the
i-LDS MCTS dataset is less obvious. This is the result
of a limited volume of people in this dataset, since for
such scenarios, representations based on multiple levels
of granularity are less discriminative than when applied
to crowded scenes; purely global descriptors appear to
be sufficiently competitive for characterizing such small
groups.

E. Computational Complexity

Table VII shows the running time of our group Re-ID
approach on different datasets (excluding the time consumed
for object detection and feature extraction). The running test
is conducted on an 8-core i7-7700@3.60 GHz CPU platform.
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We list two time complexity values: 1) the running time for
the entire process (all image pairs in the dataset) and 2) the
average running time for computing the similarity of a single
group image pair (per image pair). Table VII shows that our
approach is acceptable in running time.

VII. CONCLUSION

This paper introduces a novel approach to address the
seldom-studied problem of group Re-ID. This paper con-
tributes broadly in these aspects: 1) a multigrained group
Re-ID framework which derives feature representations for
multigrained objects and iteratively evaluates their impor-
tance at different granularities to handle group dynamics; 2) a
multiorder-matching process which integrates multigrained
information to obtain more reliable group matching results;
and 3) two independent pipelines (handcrafted and deep learn-
ing) which are capable of encoding appearance and spatial
relations of multigrained objects. Overall, our extensive exper-
iments demonstrate the viability of our approaches. We also
release our group Re-ID datasets involving realistic challenges
to spur future works toward this direction.
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